Inner Separation Structures for Topological Spaces
نویسندگان
چکیده
In this paper we present new forms of the classical separation axioms on topological spaces. Our constructions generate a method to refine separation properties when passing to the quotient space and our results may be useful in the study of algebraic topological structures, such as topological groups and topological vector spaces. AMS subject classification: 54D10, 54D15, 54H11, 54H13.
منابع مشابه
On generalized topological molecular lattices
In this paper, we introduce the concept of the generalized topological molecular lattices as a generalization of Wang's topological molecular lattices, topological spaces, fuzzy topological spaces, L-fuzzy topological spaces and soft topological spaces. Topological molecular lattices were defined by closed elements, but in this new structure we present the concept of the open elements and defi...
متن کاملNEW METHODS FOR CONSTRUCTING GENERALIZED GROUPS, TOPOLOGICAL GENERALIZED GROUPS, AND TOP SPACES
The purpose of this paper is to introduce new methods for constructing generalized groups, generalized topological groups and top spaces. We study some properties of these structures and present some relative concrete examples. Moreover, we obtain generalized groups by using of Hilbert spaces and tangent spaces of Lie groups, separately.
متن کاملOn Generalized Injective Spaces in Generalized Topologies
In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...
متن کاملThe notions of closedness and D-connectedness in quantale-valued approach spaces
In this paper, we characterize local $T_{0}$ and $T_{1}$ quantale-valued gauge spaces, show how these concepts are related to each other and apply them to $mathcal{L}$-approach distance spaces and $mathcal{L}$-approach system spaces. Furthermore, we give the characterization of a closed point and $D$-connectedness in quantale-valued gauge spaces. Finally, we compare all these concepts to each o...
متن کاملSmooth biproximity spaces and P-smooth quasi-proximity spaces
The notion of smooth biproximity space where $delta_1,delta_2$ are gradation proximities defined by Ghanim et al. [10]. In this paper, we show every smooth biproximity space $(X,delta_1,delta_2)$ induces a supra smooth proximity space $delta_{12}$ finer than $delta_1$ and $delta_2$. We study the relationship between $(X,delta_{12})$ and the $FP^*$-separation axioms which had been introduced by...
متن کامل